Full control of qubit rotations in a voltage - biased superconducting flux qubit
نویسنده
چکیده
We study a voltage-controlled version of the superconducting flux qubit [Chiorescu et al., Science 299, 1869 (2003)] and show that full control of qubit rotations on the entire Bloch sphere can be achieved. Circuit graph theory is used to study a setup where voltage sources are attached to the two superconducting islands formed between the three Josephson junctions in the flux qubit. Applying a voltage allows qubit rotations about the y axis, in addition to pure x and z rotations obtained in the absence of applied voltages. The orientation and magnitude of the rotation axis on the Bloch sphere can be tuned by the gate voltages, the external magnetic flux, and the ratio α between the Josephson energies of the junctions via a flux-tunable junction. We compare the single-qubit control in the known regime α < 1 with the unexplored range α > 1 and estimate the decoherence due to voltage fluctuations.
منابع مشابه
Quantum Control and Quantum Measurement in Solid State Qubits
In the past two decades significant theoretical and experimental efforts have been devoted to the study and development of mesoscopic devices, that exploit quantum coherence at the nanoscale. Quantum computing represents an emerging promising field of science and technology and is currently subject of extensive investigation. One of the fundamental issues, that still represents a major obstacle...
متن کاملCircuit theory for decoherence in superconducting charge qubits
Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle...
متن کاملSpecial issue on quantum computing with superconducting qubits
Ten years ago the first superconducting qubit was demonstrated experimentally [1]. By now quantum computing with superconducting qubits has become a subject of intensive experimental and theoretical research in dozens of groups around the world. The idea of this Special Issue of the journal is to show the status of experimental research in this area after the first decade of work. Most of the b...
متن کاملTunable resonant and nonresonant interactions between a phase qubit and LC resonator.
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling strengths from zero t...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008